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Figure 1: Reflection effects rendered by Monte Carlo path tracing (GT), our method (Ours) and the image-based lighting method
(IBL) in the synthetic scene Room (top). Compared with IBL, Ours is closer to GT. MSE of Ours vs. IBL is 1.12×10−2 vs.
4.87×10−2. In the real scene Bag (bottom), the foreground reflection effects of Ours are also obviously different from that of
IBL. The framerate of our method is comparable to IBL: 37.43 fps vs. 38.78 fps.

ABSTRACT

Currently, ray tracing and image-based lighting (IBL) have short-
comings when rendering the metallic virtual object displayed in
the holographic pyramid in mixed reality. Ray tracing can hardly
achieve the interactive frame rates, and IBL cannot accurately render
the reflection result of the foreground near the virtual object. In
this paper, we propose a mixed reality rendering method to render
glossy and specular reflection effects on metallic virtual objects
displayed in the holographic pyramid based on the surrounding real
environment at interactive frame rates. First, we acquire the real
environment data with four RGBD cameras and a panoramic cam-
era; then, we introduce a foreground point cloud generation method
to extract a temporally stable foreground point cloud from RGBD
videos captured in real time; after this, we propose an efficient ray
tracing method to render the dynamic glossy and specular reflections
on the virtual objects that are displayed in the holographic pyramid.
We test our method on several real and synthetic scenes. Compared
with IBL and screen-space ray tracing, our method can generate the
rendering results closer to the ground truth at the same time cost.
Compared with Monte Carlo path tracing, our method is 2.5-4.5×
faster in generating rendering results of the comparable quality.
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1 INTRODUCTION

In recent years, with the development of 3D acquisition and mod-
eling technology, the accuracy of 3D models has become higher
and higher, which makes it possible to present virtual objects with
high fidelity. For example, in the museum, we can use the display
equipment such as holographic pyramid to display 3D models of
precious cultural relics that cannot be directly displayed. To present
them more realistically, ideally these virtual cultural relics can reflect
the light of the real scene. For instance, the audience’s image can be
reflected on a metal vase, and the audience’s occlusion can change
the lighting effect on the surface of the porcelain. These all require
realistic mixed reality rendering. We can use the RGBD cameras
to capture the surrounding environment, and then perform lighting
calculations with virtual objects to generate mixed reality rendering
results, which are presented in the holographic pyramid.

Image-based lighting (IBL) [6] is a real-time rendering technique
commonly used in mixed reality (MR), which takes the illumination
of the real scene as the environment map and uses this environment
map to illuminate virtual objects. Ray tracing and IBL can render
the reflection effects of the real environment on metallic virtual ob-
jects, but both methods have their shortcomings. The ray tracing
method [42] can render the reflection effects of virtual objects ac-
curately when we have the correct and complete geometric shape
information of the real scene. However, the direct use of ray tracing
to calculate the intersection of the light and the panoramic point
cloud to render the glossy reflection effects of the metallic virtual
object is too expensive to achieve interactive frame rates. In addi-
tion, because we use the RGBD camera to obtain real-time color
and depth information of the surrounding real scene, the obtained
information is incomplete, and the generated 3D point cloud is un-
stable. Therefore, the direct use of ray tracing methods will cause
artifacts such as reflection color loss or distortion. IBL can render
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the reflections efficiently, it assumes that the real scene around is
far away from the virtual object displayed, renders the real scene
into an environment map, and then uses this map to compute the
reflections on the surface of the virtual object. Thus, if some objects
in the real scene are close to the virtual object, we may get the wrong
reflections.

In this paper, we propose a mixed reality rendering method for
rendering virtual objects displayed in the holographic pyramid based
on IBL and ray tracing at interactive frame rates. Our method can
render glossy and specular reflection effects on the metallic vir-
tual objects based on the real environment around the holographic
pyramid. Firstly, we introduce a real-time mixed reality rendering
pipeline, which uses IBL to render the static background reflection
effects and uses an efficient ray tracing method to render the dy-
namic foreground reflection effects, so as to improve the rendering
efficiency, and to avoid the problem of artifacts caused by the IBL
method when the real object is too close to the virtual object. Then,
we introduce a foreground point cloud generation method to extract
the temporally stable foreground point cloud from RGBD videos
captured in real time. At last, we propose an efficient ray tracing
method that can render the dynamic foreground glossy and specular
reflection effects on metallic virtual objects based on the surrounding
real environment. We test our method on several real scenes and
synthetic scenes. Compared with the rendering results using IBL [6],
the results of our method are closer to the ground truth. Our method
achieves interactive frame rates in the real dynamic environment.

In Fig. 1, we compare the ground truth rendered by using the
Monte Carlo path tracing method [38] with 5 bounces and 8192
samples per pixel, the rendering results of our method (Ours), and
the IBL method (IBL) for the synthetic scene Room (top). Our
method shows better reflection effects than IBL. Some artifacts of
IBL are shown in the cropped regions. The reflection effects of the
cushion’s orange part on the glossy bull’s neck are stretched. The
reflection on the hindleg of the glossy bull should have more green
than orange. We also compare the result of our method with the
result of IBL in the real scene Bag (bottom). The cropped regions
indicate the difference between the results of the two methods. For
a clearer presentation, we magnify the cropped regions and place
them on the right. The reflection effects of the yellow bag on the
glossy bull are deformed in IBL. This is because the yellow bag in
the dynamic foreground is very close to the glossy bull, and the bag’s
shape is incorrectly described when constructing the environment
map centered on the glossy bull, thus causing artifacts. Our method
is efficient and achieves 37.4 fps on average.

In summary, the contributions of our method are as follows:

• An interactive mixed reality rendering method, which can
render glossy and specular reflection effects on metallic virtual
metal objects displayed in the holographic pyramid to simulate
the reflection of the object to the surrounding real environment;

• A real-time foreground point cloud generation method that can
extract the temporally stable foreground from RGBD videos
and composite the 3D point cloud for the foreground;

• An efficient ray tracing method for rendering glossy and spec-
ular reflection effects on metallic virtual objects interactively.

2 RELATED WORK

In this section, we first introduce the rendering frameworks of global
illumination (GI) in MR in recent years. Then we discuss the depth
filtering techniques, which is the basis of our foreground point cloud
generation method.

2.1 Rendering Framework of GI in MR
Mixed reality technology refers to the technology that combines
real video images with computer-generated images to enhance their

practicability, which was proposed in Fournier et al. [9]. Then, they
proposed a GI approximation method, which approximated the ambi-
ent light through the image intensity of real video images, and used
classical radiosity computation to render the surface of computer-
generated images. However, this method requires intensive computa-
tion and data preparation to solve the light transport equation. Due to
many regions in the photograph remaining unchanged, and the same
work being done twice without any visual effect in conventional
differential rendering, Grosch. [13] constructed a differential photon
map to store the changes in lighting introduced by virtual objects in
MR, and performed rendering with only a single photon mapping
simulation. Debevec [6] proposed the image-based lighting method
(IBL) to render synthetic objects based on the environment illumina-
tion maps in MR. To simulate the GI effects of diffuse virtual objects
in MR, Grosch. [14] took the HDR (high-dynamic range) image
as the light source and computed irradiance volumes from the real
region illuminated by the light source, then used irradiance volumes
as indirect light sources to render diffuse virtual objects. Kautz et
al. [20] proposed prefiltered method based on IBL to render glossy
effects in real time. By interpolation calculating with prefiltered
environment mipmap, this method can render different roughness
metallic objects. Knecht et al. [22] proposed the differential instant
radiosity method, which applied instant radiosity to the framework
of differential rendering for rendering diffuse virtual objects in MR.
Because using IBL to render the reflection effects of the near objects
in the scene will cause serious artifacts, Pessoa et al. [31] extended
IBL by back-projecting the near scene to the environment to gener-
ate a new environment map, then used the new environment map to
perform rendering. However, the reflection results rendered by [31]
still have physical errors. Santos et al. [8] constructed the virtual
ghost objects from the RGBD images of the near scene, and used ray
tracing to simulate the specular reflection or refraction effects of the
near scene’s object on virtual objects. Kan et al. [19] combined San-
tos’s method [8] with the re-projection technique [13] to calculate
radiance in the common camera image that does not have depth, then
used ray tracing to render specular reflection and refraction effects
on virtual objects. Lensing et al. [24] extended reflective shadow
maps [5] based on RGBD image to simulate the first bounce on dif-
fuse objects and achieve GI in both directions (real to virtual and vice
versa) in MR. Meilland et al. [30] extended Pessoa’s method [31],
reconstructed the real scene into a 3D HDR environment map based
on a dynamic set of images, and then generated the reflection envi-
ronment maps at the virtual objects’ position according to the real
scene 3D model to render virtual objects’ reflection effects. Rohmer
et al. [36] introduced a differential rendering method for rendering
diffuse and glossy virtual objects in MR on mobile devices. They
projected the HDR images captured in different positions of the real
scene into the atlas texture, which is divided into direct and indirect
radiance as virtual area lights (VAL). This method can render high
glossy reflection and color bleeding effects based on VALs. Mehta
et al. [29] proposed a filter based on Fourier analysis to denoise the
results from path-tracing to achieve physically correct global illumi-
nation in MR. Gruber et al. [15] regarded the surrounding of virtual
objects in MR as indirect light sources, and proposed a method to
render color bleeding effect between real and virtual object based on
the screen-space directional occlusion [35]. Schwandt et al. [39, 40]
proposed a method to generate a dynamic 360◦ environment map
for IBL rendering in MR. Firstly, they generated the pre-computed
static 360◦ environment map before rendering. Then they combined
it with the real-time image stitchings for a continuous enhancement
and update of the lighting information. Wang et al. [46] conducted a
bidirectional shadow rendering method for 360◦ video in MR, which
can render the interactive shadows between virtual and real objects.

Some studies have recently focused on learning lighting infor-
mation such as environment maps or bidirectional reflectance distri-
bution function (BRDF) parameters from RGB images using depth
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learning models. Georgoulis et al. [10] presented a deep learning
model to estimate the reflectance parameters and an illumination
map from a single image that depicts a single-material specular
object. Based on Georgoulis’s method [10], LeGendre et al. [23]
proposed a model that can estimate the reflectance parameters and
the illumination map from the low dynamic range input images
captured by mobile devices without high-precision images. Due to
the previous deep learning models could only predict the lighting
at individual 3D locations within the scene, Srinivasan et al. [43]
introduced a deep learning model that estimates a 3D volumetric
RGBα model of a scene, which can be used to calculate the inci-
dent illumination at any 3D location within that volume by standard
volume rendering.

However, the above methods cannot render high-quality glossy
and specular reflection effects at interactive frame rates in MR. The
ray tracing-based methods need many samples to render glossy re-
flections, which is not efficient enough. The IBL-based methods
would produce artifacts when rendering reflection effects for the
environment with many dynamic foreground objects in MR. Our
method performs mixed reality rendering to simulate glossy and
specular reflection effects on virtual objects displayed in the holo-
graphic pyramid at interactive frame rates. Our method can achieve
high-quality dynamic foreground reflection effects by our efficient
ray tracing method.

2.2 Depth Filtering Techniques

Early depth filtering techniques mainly focused on the off-line depth
processing of RGBD videos captured by infrared depth cameras to
smooth the depth and fill depth gaps in RGBD videos. Marroquim
et al. [26] proposed a GPU-based pull-push interpolation method
that combined with elliptic box filters, which can reconstruct the
rendering result in image space. Matyunin et al. [27] proposed
a temporal depth filter to improve the temporal stability and fill
occlusion regions of the depth in RGBD videos. However, this filter
is an off-line filter and cannot process RGBD images in real time.
Camplani et al. [3] combined the joint-bilateral filter and the Kalman
filter to fill depth holes and smooth the depth of RGBD images. But
this method is aimed at static scenes, which would lead to depth
flicker in regions with drastic depth changes in dynamic scenes.
Zhou et al. [47] proposed a super-resolution reconstruction for low-
resolution depth images based on the modified joint trilateral filter.
However, this method is an off-line method and does not consider
filling the missing depth of low-resolution depth images.

Besides the off-line depth processing, many studies developed
filters for handling depth in RGBD videos in near real time. Ritschel
et al. [34] used the pull-push method to fill the depth gaps in the
imperfect shadow maps. Knecht et al. [22] extended this work to
mixed reality. Richardt et al. [33] developed a depth filter that can
be used to smooth the depth of real-time RGBD images. They first
removed typical artifacts in the RGBD images, then applied the
denoising and upsampling scheme to RGBD images. However, the
performance of this method achieves 5.2 fps for a 584×506 RGBD
video. Camplani et al. [4] proposed a hole filling strategy based on a
joint-bilateral filtering framework, which is used to fill the pixels that
miss depth in RGBD images. Lin et al. [25] proposed an exemplar-
based inpainting method to remove artifacts in depth maps obtained
from RGBD cameras. The above two methods didn’t focus on the
flicker problem of depth values. Avetisyan et al. [1] refined the
depth of RGBD videos using optical flow. They tracked every depth
pixel over a sequence of frames in the temporal domain and used
the same point’s valid depth values to reduce the temporal noise and
the flickering artifacts. This method needs the information of future
frames, which is difficult to be applied to real-time scenes. Holynski
et al. [18] presented an algorithm to propagate sparse depth to every
pixel in MR, which needs the sparse simultaneous localization and
mapping (SLAM) reconstruction as input. But this method could

only roughly estimate the depth of each pixel in an RGB image
according to the sparse SLAM reconstruction and can not directly
filter the depth of the RGBD image.

We also use the depth filtering technique in our foreground point
cloud generation. Our filter is based on the idea of pull-push, and
uses temporal coherence of the adjacent RGBD frames to generate
the temporally stable point cloud with rational depth.

3 INTERACTIVE MIXED REALITY RENDERING ON HOLO-
GRAPHIC PYRAMID

We propose a mixed reality rendering method to render the reflection
effects of the real environment on metallic virtual objects displayed
in the holographic pyramid at interactive frame rates. Fig. 2 shows
the five steps of our method.

Step 1 is Real Environment Data Acquisition, in which we use
a panoramic camera and four depth cameras to capture the scene
around the holographic pyramid. Step 2 is Foreground Point cloud
Generation, in which we propose a real-time point cloud genera-
tion method to generate the temporally stable point cloud for the
dynamic foreground. Step 3 is Efficient Ray Tracing for Dynamic
Foreground Reflections, in which we propose a ray tracing method
for rendering dynamic foreground glossy and specular reflection
effects on the metallic virtual object interactively. The details of step
1, 2 and 3 are given in Sect. 3.1, Sect. 3.2 and Sect. 3.3 respectively.

In Step 4: IBL for Rendering Static Background Reflections,
we use IBL [6] to render reflections of the static part of the real
environment on the surface of metallic virtual objects. Firstly we
generate the background blurred image pyramid ρθ based on the
static background panorama θ . Then we initialize the static ren-
dering framebuffer ψs, which is the same size as the reflection
framebuffer ψr. ψr is generated in step 3, which is used to store the
position, the reflected direction and the material of each intersecting
point on the virtual object. For each pixel in ψs, we first index its
intersecting point information in ψr, including position, material and
reflection direction. Then we index the cubemap constructed from θ
according to the position and reflection direction of the intersecting
point, and index the specific level of ρθ according to the roughness
of the material, so as to calculate the radiance corresponding to each
pixel and store it in ψs.

In Step 5: Rendering Results Composition, we interpolate the
rendering results of the dynamic rendering framebuffer ψd and the
static rendering framebuffer ψs to composite the final rendering
result ψ f . A weight mask is also generated in Step 3. For each pixel
px in the final rendering result ψ f , we get a weight value w from the
weight mask at the same position of px, and directly calculate the
final radiance as ψ f [px]= ψd [px]*w+ψs[px]*(1-w). We apply HDR
rendering [11] for both dynamic foreground reflections and static
background reflections rendering.

3.1 Real Environment Data Acquisition
The device for displaying virtual objects includes a holographic
pyramid, a panoramic camera, four depth cameras, and a graphics
rendering workstation. Fig. 3 shows our hardware setups. The
holographic pyramid consists of a base and an inverted glass pyramid.
Four 19-inch monitors are lying flat on the base to display four front
views of the virtual object. The inverted glass pyramid is placed
above the base to reflect the content of four monitors. We render
the virtual objects of mixed reality with the graphics rendering
workstation, output the rendering results to four monitors, and then
project them into the inverted glass pyramid. Users can see the
result of mixed reality rendering on the inverted glass pyramid.
The holographic pyramid, four depth cameras, and one panoramic
camera are connected to the graphics rendering workstation with a
3.6 GHz Intel(R) Core(TM) i7-9700KF CPU, 16 GB memory, and
an NVIDIA GeForce RTX 2080 SUPER graphics card. We take the
center of the plane on the holographic pyramid’s base as the origin
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Figure 2: Pipeline of Our Method

O, and establish the MR coordinate system as shown in the Fig. 3.
The positions of the panoramic camera, four depth cameras, and the
virtual object are calibrated to the MR world coordinate system.

The model of the panoramic camera is Insta360 OneX, which has
two 200◦ fish-eye cameras and 6080×3040 resolution for capturing
panoramas. The panoramic camera is used to capture the static back-
ground panorama of the real scene around the holographic pyramid.
Since the background around the holographic pyramid usually does
not change, in the pre-processing, we remove the inverted glass
pyramid and fix the panoramic camera above the base to capture the
panoramic background. If the user wants to capture the dynamic
background, the panoramic camera can be fixed above the center
of the pyramid by a fixing device. However, if the fixed device is
placed inside an inverted glass pyramid, the user may see the fixed
device through the glass, which affects the visual effect.

Four depth cameras, ZED2 ( 110◦ horizontal FOV, 70◦ vertical
FOV, 0.2 ∼ 20m depth range, 720P resolution, and 60 fps video
stream), are used to capture the RGBD frames of the real scene
around the holographic pyramid from four directions, which are
mounted on the four sides of the base. We don’t use the panoramic
camera to extract dynamic foreground in real time mainly for the fol-
lowing reasons: 1) there is no panoramic depth camera on the market
currently, and we need the depth information of the foreground for
rendering more accurate reflection effects; 2) the panoramic camera
cannot be well fixed on the holographic pyramid.

Figure 3: Our device setups, containing one holographic pyramid,
four depth cameras, one panoramic camera, and one graphics ren-
dering workstation.

Before the algorithm starts, we need to perform the pre-processing
once. In the pre-processing, we remove all the dynamic objects
around the holographic pyramid, use the panoramic camera to cap-
ture the static background panorama θ , and use each of the four

depth cameras to take a static background RGBD frame γs. θ is
used to generate the static part of the real scene. For the frame i in
real time, each of these four depth cameras will capture the dynamic
foreground RGBD frame γi of the current scene in real time when the
user stands around the device to observe the virtual object displayed
in the holographic pyramid. γs and γi are used to extract the dynamic
part of the real scene.

3.2 Foreground Point Cloud Generation
In foreground point cloud generation, we first construct the optical
flow map λi, and the foreground mask φi for the current frame i.
After that, the pull-push based temporal depth filter is introduced
to fill and filter the depth of the current dynamic foreground RGBD
frame γi with considering of the last dynamic foreground RGBD
frame γi−1 and the last foreground mask φi−1. Finally, we generate
the temporally stable point cloud ωi for the dynamic foreground.

The optical flow map λi is constructed by the optical flow method
[2] according to the current dynamic foreground RGBD frame γi and
the last dynamic foreground RGBD frame γi−1. Each pixel in the
optical flow map λi stores a 2D offset vector, which is used to index
the precursor pixel of the corresponding pixel in the current dynamic
foreground RGBD frame γi. Precursor pixel pxpre of a given pixel
px in the current dynamic foreground RGBD frame γi means that
pxpre in the last dynamic foreground RGBD frame γi−1 shows the
same real content as px. The foreground mask φi is constructed by
MOG2 [48] according to the current dynamic foreground RGBD
frame γi and the background RGBD frame γs. The foreground mask
φi is a binary framebuffer and has the same width and height as
the current dynamic foreground RGBD frame γi, which is used
to indicate whether the corresponding pixel in γi is the dynamic
foreground. If it is 1, it is the foreground,; but if it is 0, it is not.

Our pull-push based temporal depth filter is based on the tradi-
tional pull-push method [12]. The traditional pull-push method is
often used to fill any gaps in the depth data for the image. It takes
the image γi as the input, then output a filtered image according to
the image pyramid ρpa that generated based on γi. Specifically, it
takes γi as the 1st layer. Then, every four pixels in the lower layer
are processed into one pixel and inserted into the upper layer from
2nd to lmaxth layer in the step of pull. In the step of push, the pixels
of the upper layer are divided into four pixels and inserted into the
lower layer from lmax− 1th to 1st layer, and the 1st layer of the
image pyramid ρpa is regarded as the output.

In our pull-push based temporal depth filter, besides taking current
dynamic foreground RGBD frame γi and the maximum layer number
of the image pyramid lmax as inputs, we also take optical flow map λi,
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current foreground mask φi, last foreground mask φi−1, last dynamic
foreground RGBD frame γi−1, probability distribution function of
confidence PDFα , probability distribution function of absolute value
of depth difference PDF|d|, the number of frames used to update the
probability distribution function C, and current frame i as inputs.

For each pixel px in the dynamic foreground RGBD frame γi, we
calculate the confidence αpx according to the RGBD values of px
and its precursor pixel pxpre. The confidence αpx of px is used to
describe the reliability of px’s precursor pixel pxpre obtained by λi.
The smaller px’s confidence αpx, the more reliable the precursor
pixel pxpre is. αpx is computed with Equation 1:

αpx =
√

∑
c∈r,g,b

(px.c− pxpre.c)2 (1)

The pull-push based temporal depth filtering is shown in algo-
rithm 1. Firstly, we initialize a image pyramid ρpa in line 1. Each
pixel in ρpa stores a pair, which contains two floats: depth d and
confidence α . ρpa has lmax layers in total. d of each pixel px in 1st
layer is the depth d of the corresponding pixel in γi, and α of px is
temporarily set to 1.

Algorithm 1: Pull-push based Temporal Depth Filtering

input :current foreground mask φi, the optical flow map
λi, current dynamic foreground RGBD frame γi,
last dynamic foreground RGBD frame γi−1, last
foreground mask φi−1, probability distribution
function of confidence PDFα , probability
distribution function of absolute value of depth
difference PDF|d|, the number of frames for PDF
update C, the current frame i

output :current dynamic foreground RGBD frame with
processed depth γi

1 ρpa ← initImagePyramid(γi, lmax);
2 while l ∈ range(0, lmax) do
3 for block ∈ ρpa[l] do
4 paList ← initList();
5 if l == 1 then
6 for px ∈ γi[block] do
7 pxpre, αpx ← GetPrePx (px,γi, γi−1,λi,

φi,φi−1);
8 pa← initPa();
9 |d| ← abs(px.d− pxpre.d);

10 if i <C+1 then
11 PDF|d| ←

updatePDF(PDF|d|, |d|);
12 PDFα ←

updatePDF(PDFα ,αpx);
13 return γi;

14 else
15 Pα ← PDFα (αpx);
16 P|d| ← PDF|d|(|d|);
17 d̂ ← (1−Pd)∗ px.d +Pd ∗ pxpre.d;
18 pa← Pa(d̂,Pα );

19 paList ← paList ∪ pa;

20 else
21 paList ← paList ∪ ρpa[l][block];

22 pa← avg(minC(paList));
23 ρpa[l +1][block]← pa;

24 γi ← Push(ρpa, lmax,φi);
25 return γi;

Lines 2-22 show the process of pull. If the current layer l is
lower than the highest layer lmax, we traverse the 1th layer of ρpa
with 2× 2 as a block (lines 2-3). We initialize the empty pair list
paList in line 4. If the current layer l is 1, we will traverse each
pixel px in block (lines 5-6). For each pixel px in block, we get
the precursor pixel pxpre and the confidence αpx using Equation 1
of px (line 7). We initialize an empty pair pa in line 8. Then we
calculate the absolute value of the depth difference |d| between
px.d and pxpre.d (line 9). In lines 10-18, we adjust the depth of
the pixel px based on its confidence αpx and absolute value of the
depth difference |d|. If the current frame i is within the first C
frames of the system start to run (line 10), we count |d| and get the
probability distribution function of the absolute value of the depth
difference PDF|d| (line 11), and count αpx and get the probability
distribution function of the confidence PDFα (line 12). We do not
calculate a certain function expression but express the function by
enough discrete function values in the domain. After that, we return
directly without further processing(line 13). If the current frame i is
not smaller than C+1 (line 14), we assume PDF|d| and PDFα are
stable enough. Then we get the probability Pα that the confidence
is less than or equal to αpx (line 15), and the probability P|d| that
the absolute value of the depth difference is less than or equal to |d|
(line 16). The larger of |d|, the smaller the probability of occurrence
greater than or equal to this value. So we assume that the depth
value of px is abnormal, and use more depth value of pxpre to correct

it (line 17). We set the depth of pa as d̂ and the confidence as Pα
(line 18). Then we add pa to the list paList (line 19). If the current
layer l is larger than 1, we only need to add all pairs in ρpa[l][block]
into list paList (lines 20-21). For interpolating each pair pa in l +1
layer, we get the average pair pa in ρpa[l][block] with the minimum
confidence (line 22), and assign pa to ρpa[l +1][block] (line 23).

After pulling all layers in ρpa, we push the depth from lmaxth layer
to 1st layer to fill and filter the depth in the dynamic foreground part
of γi according to φi (line 24) and return it (line 25).

3.3 Efficient Ray Tracing for Glossy and Specular Reflec-
tions on Virtual Objects

To render the dynamic foreground reflection effects on the virtual
objects displayed in the holographic pyramid, an efficient ray tracing
is proposed. The input of the ray tracing method is the foreground
blurred image pyramid ργ , the grey-scale image pyramid ρg, and
the expanded foreground point cloud ωi. The output is the dynamic
rendering framebuffer ψd and the weight mask φw.

Figure 4: Procedure of the efficient ray tracing for rendering dynamic
foreground reflection effects on the virtual object.

ργ is an image pyramid to store the RGB of the dynamic fore-
ground RGBD frame γi with different blurring levels in different
layers. The higher layer of ργ has higher blurring level, which is
used to correspond to the higher roughness of the metallic virtual ob-
jects. ρg has the same size as ργ . Each pixel in ρg stores the weight
from 0 to 1, which is used to interpolate the corresponding pixel
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in ργ . We use KawaseBlur [21] to generate the foreground blurred
image pyramid ργ based on the dynamic foreground RGBD frame γi,
and the grey-scale image pyramid ρg based on the foreground mask
φi. ργ and ρg both have lmax layers. Each pixel in the 1st layer of
the foreground blurred image pyramid ργ is the corresponding pixel
in the dynamic foreground RGBD frame γi. Each value in the 1st
layer of the grey-scale image pyramid ρg is the corresponding value
in the foreground mask φi. We use the KawaseBlur method [21] to
map each layer of ργ and ρg to a blurred image with the specific
roughness. The higher the layer of ργ and ρg, the higher the corre-
sponding roughness of this layer, so the higher the blurring of this
layer’s image. Examples of ργ and ρg generated according to the
real scene are shown in Fig. 5 (a) and (b).

Figure 5: Real examples of (a) the foreground blurred image pyramid
ργ , (b) the grey-scale image pyramid ρg, and (c) the background
blurred image pyramid ρθ generated according to the real scene.

ωi is the foreground point cloud that expanded from the fore-
ground point cloud generated in Sect. 3.2, which is used to prevent
the reflection effects of the static background and the dynamic fore-
ground on the virtual object from being too stiff. To expand the
foreground point cloud ωi, we obtain pixels in the dynamic fore-
ground RGBD frame γi whose mask values are in the range of greater
than 0 and less than 1 in the highest layer lmax of ρg, and add them
to the point cloud ωi in combination with the depth value dbor. dbor
is computed by averaging all dynamic foreground edge pixels in φi.

ψd is the framebuffer that is used to store the dynamic foreground
reflection effects on the virtual objects displayed in the holographic
pyramid. φw is the mask that is used to store the weight for inter-
polating the rendering result of the dynamic foreground reflection
and the static background reflection. We use the ray tracing-based
reflection rendering method to render ψd and φw.

Fig. 4 shows our ray tracing procedure. A virtual object is dis-
played in the holographic pyramid. We trace rays from the eye (E)
to the virtual objects (gray sphere) and use hit points to refer to the
intersecting points on the virtual object (A,B and C). Then the rays
are reflected from hit points to the dynamic foreground point cloud
ωi and the static background panorama θ , the intersections on ωi
and θ are referred to as collisionpoints (A′,B′ and C′).

The eye position (E) is captured by the Kernelized Correlation
Filter [17] according to RGBD data in real time. Then, we use rasteri-
zation to generate hit points on the virtual object based on the tracing
paths (solid lines) from the eye through the pixels in the dynamic
rendering framebuffer ψd . After that, we calculate the reflected rays
(dotted lines) according to normal vectors of hit points. We store
the position, the reflected direction and the material of each hit point
in the reflection framebuffer ψr, Then, we intersect the dynamic
foreground point cloud ωi and the static background panorama θ
at the same time with the reflected rays. To intersect with ωi, we
voxelize ωi and use one-bounce voxel walk [16] to generate the
collisionpoints on ωi. To intersect with θ , we generate the cube-
map based on θ [7] and index the corresponding collisionpoints in
the cubemap directly according to the hit point’s position and the
direction of hit point’s reflected ray in ψr.

For each pixel px on the dynamic rendering framebuffer ψd , if
px’s collisionpoint is on the foreground point cloud ωi, we calculate
the radiance ψd [px] according to the foreground blurred image pyra-
mid ργ , and the weight φw[px] according to the grey-scale image
pyramid ρg. If px’s collisionpoint is not on ωi, we only need to

calculate the radiance according to the static part of the real scene,
and assign the radiance ψd [px] and the weight φw[px] to null. Fig. 5
shows the real examples of (a) the foreground blurred image pyramid
ργ , (b) the grey-scale image pyramid ρg, and (c) the background
blurred image pyramid ρθ .

The collisionpoint A’ and B’ in Fig. 4, we index the correspond-
ing pixel position pa in the foreground blurred image pyramid ργ
and index the specific layer l on ργ according to the object mate-
rial on the corresponding hit point, and finally assign the radiance
of ργ [l][pa] to ψd [px] and assign the weight of ρg[l][pa] to φw[px].
The collisionpoint C’ in Fig. 4 is not on ωi, so we set the radiance
ψd [px] and the weight φw[px] to null.

4 RESULTS AND DISCUSSION

In this section, we tested our method with quality experiments and
performance experiments. In the quality experiments, we compared
the visual quality between our method and the image based lighting
method (IBL) [6]. Both real scenes and synthetic scenes are used,
because we want to see not only qualitative quality results, but also
quantitative analysis. In order to prove the depth rationality and
temporal stability of the generated foreground point cloud, we also
tested our foreground point cloud generation method separately in
real scenes. In the performance experiments, we compared the time
cost of each step between our method and IBL.

4.1 Quality Experiments
4.1.1 Real Scenes

Figure 6: The comparison between Ours and IBL in real scenes:
Book and Bag, with Vase, Kettle and Tripod.

Fig. 6 compares the rendering quality between our method and
IBL in two real scenes Book and Bag with three different virtual ob-
jects Vase, Kettle and Tripod. Line 1 of Fig. 6 shows the panorama
and foreground RGBD images of two real scenes Book and Bag.
Line 2 shows the rendering results of our method (Ours), and line 3
shows the rendering results of IBL.

Compared with Ours, some artifacts of IBL are shown in the
cropped regions. Column (a), the user reflection effects on Vase are
too blurry. Column (b), the book in the user’s hand is stretched in the
reflection effects on Kettle. Column (c), the shape of user reflection
on Tripod is deformed, and user reflection effects on Tripod are too
blurry. Columns (d), the yellow reflected by the foreground yellow
bag on Vase is not obvious enough and too blurry. Columns (e), the
reflection shape of the foreground yellow bag on Vase is stretched
incorrectly. Column (f), the reflection of the foreground yellow bag
on Tripod has the wrong shape and is too blurry. This is because
the IBL method lacks the geometric information of the real scene
object, and cannot correctly draw the reflection of the nearby real
object on the surface of the virtual object [32].

We compare the rendering quality of our method (Ours) and the
screen-space ray tracing method (SSRT) [28] at the same time cost
in Fig. 7. We magnify the cropped regions and place them on the
right. Compared with Ours, the reflection effects of the yellow bag
on Vase have noisy points in the green cropped region and holes in
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Figure 7: The comparison between Ours (left) and SSRT (right) in
the real scene Bag with Vase.

the yellow cropped region in SSRT. The reason for SSRT having
noisy points is that it cannot render high-quality glossy reflection
effects with few samples per pixel (spp), while our method can
use 1 spp to simulate the glossy reflection effects on the virtual
object. The reason for SSRT having holes is that some pixels are
lost during the reprojection of the RGBD image. Using SSRT, we
need to reproject the RGBD image captured by the depth camera
using the camera located at the origin O of the MR world coordinate.
During reprojection, multiple pixels in the original RGBD image
may overlap on the same pixel position in the new RGBD image, and
only the nearest pixel is retained, while other pixels are discarded.
Therefore, the intersection calculation may return null values and
generate holes.

4.1.2 Synthetic Scenes

Figure 8: The comparison among GT, Ours and IBL in synthetic
scenes: Kitchen, Room and Sponza, with Vase, Kettle and Tripod.

To quantitatively test our method, the rendering quality of our
method is compared with those of ground truth (GT) and IBL in
synthetic scenes. The rendering results are shown in Fig. 8. Line 1
shows the panorama of Kitchen, Sponza, Room. The ground truth
images are obtained using the Monte Carlo path tracing method [38]
with 5 bounces and 8192 samples per pixel (spp) (GT, line 2). The
rendering results and MSE visualizations of our method (Ours) are
shown in line 3 and line 4. The rendering results and MSE visualiza-
tions of IBL are shown in line 5 and line 6. To construct synthetic
scenes for GT and IBL, we first put all virtual objects included in
synthetic scenes into the MR coordinate system, and project the
depth cameras and the panoramic camera in the MR coordinate sys-
tem. Then we render the static background panorama θ according
to the panoramic camera, render the static background RGBD frame
γs and the dynamic foreground RGBD frame γi according to the
depth cameras. After that, we directly extract the foreground point
cloud ωi based on the static background RGBD frame γs and the

dynamic foreground RGBD frame γi. Then we combine ωi with θ
to construct synthetic scenes.

The results of Ours are closer to the results of GT than those of
IBL. Some artifacts of IBL are shown in the cropped regions. In
Kitchen: column (a), the blue color reflected on the base of Vase due
to the reflection effects of the blue book, and the red color reflected
on the body of Vase due to the reflection effects of the red part of
the ball should be more obvious; column (b), the reflection color
of the apple on Kettle is not obvious enough, and the reflection
color of blue books and yellow bags on Kettle is offset; column
(c), the reflection color of the blue book on Tripod should be more
obvious, and the reflection color of the foot should be mainly yellow
rather than blue. In Room: column (d), the reflection color of the
green leather bag on the body of Vase is overstretched, and the
reflection color of the red book on Vase body is not obvious enough;
column (e), the reflection color of the orange part on the cushion and
the green leather bag on Kettle are offset; column (f), the body of
Tripod should have obvious yellow reflection formed by the yellow
cushion, and the reflection color of the foot should be mainly orange
rather than blue. In Sponza: column (g), the reflection color of the
green sculpture and the orange sculpture at the bottom of Vase is
offset; column (h), the reflections of shield and green sculpture on
Kettle have the wrong stretching effects; column (i), the reflection
of shield and orange sculpture on Tripod is deformed.

Because our method uses the same method as IBL to render the
static background reflection region without introducing additional
error, we focus on comparing the dynamic foreground reflection
region on the virtual object. We quantify the quality of Ours and
IBL with the mean squared error (MSE) for all the pixels in the
dynamic reflection region of the virtual object with GT, which is
computed by comparing GT and the ground truth image without
dynamic foreground objects (absolute RGB distance ≥ 0.2). MSE
of the rendering result is defined as the average squared Euclidean
distance of all foreground pixels between the rendering result and
GT [45].

Table 1: MSE (×10−2) of Ours and IBL in the dynamic foreground
reflection region

Scene
Vase Kettle Tripod

Ours IBL Ours IBL Ours IBL

Kitchen 1.02 3.36 0.89 2.74 1.32 3.38

Room 1.13 4.21 0.79 3.15 2.19 4.89

Sponza 3.18 11.00 3.23 8.57 4.69 10.80

Table 1 shows the MSE comparison of our method and IBL for
the images in Fig. 8. According to the table, MSE of our method
is 2-4× smaller than IBL in all scenes. The images in line 4 of
Fig. 8 visualize MSE for the images in line 3 that are rendered by
our method, and the images in line 6 visualize MSE for the images
in line 5 that are rendered by IBL, the whiter pixels represent the
larger error. The error visualization shows that MSE of our method
is always smaller than that of IBL.

4.1.3 Foreground Point Cloud Generation Test

In order to test our point cloud generation method FPCGour, we
compare FPCGour with the point cloud generation method based on
median filter [44] FPCGm f and the point cloud generation method
based on temporal anti-aliasing [37] FPCGtaa.

Fig. 9 shows the comparison of FPCGour, FPCGm f , and
FPCGtaa in the real scene Book, Bag and Bucket. In Fig. 9, column
1 shows the RGBD images taken from the position of the depth
camera. For better observing the depth error of the generated fore-
ground point clouds, we visualize the foreground point cloud from
the position that moves 0.8 units along the negative direction of the
z-axis and 0.2 units along the positive direction of the x-axis from
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Figure 9: The comparison among FPCGour, FPCGm f and FPCGtaa
in Book, Bag and Bucket.

Table 2: MSE ′(cm×10−2) of FPCGours, FPCGm f and FPCGtaa

Scene FPCGour FPCGm f FPCGtaa
Book 8.31 1765.02 935.12
Bag 3.72 481.09 219.77

Bucket 2.31 316.29 186.66

the original camera position. Column 2 shows the foreground point
clouds FPCori that are directly generated from the RGBD images of
column 1. It can be seen in column 2 of Fig. 9 that there are serious
errors in the depth of FPCori. The depth of the point cloud generated
by FPCGm f and FPCGtaa is smoother, but due to apparent errors
in the depth of the filling, the object in the point cloud is obviously
deformed. The depth of the point cloud generated by FPCGour is
smooth, and the object is not deformed.

We also measure the temporal mean square error MSE ′ for
the depth of each foreground point cloud generated by FPCGour,
FPCGm f and FPCGtaa in Book, Bag and Bucket. MSE ′ uses Equa-
tion 2 to calculate the average squared Euclidean distance of all
pixels’ depth between two adjacent frames in the (n-1) consecutive
frame pairs [41].

MSE ′ = ∑n
i=2 MSEi,i−1

n−1
(2)

Table 2 shows the comparison of MSE ′ of FPCGours, FPCGm f
and FPCGtaa in Book, Bag and Bucket. MSE ′ of FPCGours is 129-
212× smaller than that of FPCGm f , and 59-112× smaller than that
of FPCGtaa. The temporal depth of the foreground point cloud
generated by FPCGours is the most stable, and it is far from other
foreground point cloud generation methods.

4.2 Performance Experiments

Table 3: Performance (ms) and fps of our method compared with
IBL in different steps.

Scene step 1 step 2 step 3 step 4 step 5 fps

Book Ours 8.7 13.6 8.7 0.1 0.2 31.9
IBL 8.8 2.4 - 14.6 - 38.8

Bag Ours 9.0 13.7 10.5 0.1 0.2 29.9
IBL 9.5 3.1 - 15.6 - 35.5

Bucket Ours 9.1 12.8 8.5 0.2 0.3 32.4
IBL 8.8 2.9 - 14.4 - 38.3

We give the time cost of each step of our method and IBL sepa-
rately in Table 3. Our method has five steps: step 1 real environment

data acquisition, step 2 foreground point cloud generation, step 3
efficient ray tracing for dynamic foreground reflections, step 4 image
based lighting for rendering static background reflections, and step
5 rendering results composition. IBL has three steps: real environ-
ment data acquisition, foreground point cloud generation, and image
based lighting for rendering both static background reflections and
dynamic foreground reflections. The average frame rates of our
method and IBL are also compared in Table 3.

In step 1, our method consumes as much time as IBL. In step
2, besides generating the foreground point cloud from the RGBD
images, our method also needs to process the depth of the foreground
point clouds. Our method consumes 9.93-11.23ms more than IBL. In
step 3, our method needs to render the dynamic foreground reflection
effects on the virtual object by the efficient ray tracing, which takes
8.50-10.50ms. In step 4, our method is 83-130× faster than IBL.
This is because IBL renders all reflection effects in this step. IBL
needs to re-project the foreground point cloud from the origin of
the MR coordinate system to the center of the virtual object, and
generate the environment map from the center of the virtual object
by combining the foreground point cloud and the static background
panorama, which is time-consuming. In step 5, we composite the
render results of step 3 and step 4 for generating the final rendering
result, which takes 0.17-0.29ms. From the fps data in Table 3, we
can see that our method achieves the comparable frame rates as IBL
in all scenes.

We compare the performance between our method and the Monte
Carlo path tracing method implemented by Optix (MCPTq, MCPTt )
with the virtual object Vase in three synthetic scenes: Kitchen,
Room, and Sponza . With comparable MSE for Kitchen, Room,
and Sponza, MCPTq’s frame rates are 7.2, 12.1, and 9.6 fps, and
our method speeds up by 2.5-4.5×. In the case of the same render-
ing time for Kitchen, Room, and Sponza, MSE of MCPTt is 4.86,
5.81 and 6.477×10−2, while the MSE of our method is reduced by
1.8-3.9×.

5 CONCLUSION, LIMITATIONS AND FUTURE WORK

We have proposed an interactive rendering method on the holo-
graphic pyramid, which can render glossy and specular reflection
effects on metallic virtual objects based on the real environment
around the holographic pyramid in real time. Compared with IBL,
the rendering results of our method are more similar to that of path
tracing with 5 bounces and 2048 samples per pixel, while maintain-
ing the high frame rates comparable to that of IBL.

The first limitation of our method is that the depth of the filled
points is uniformly set as the average depth of the current foreground
edge point dbor when expanding the foreground point cloud in step
3 of our method. Therefore, the expanded points of the foreground
point cloud may have wrong depth. So the first future work is to
combine the nearby points’ depth of the filled points with dbor to
generate an adaptive depth for each filled point, so as to reduce the
rendering artifacts caused by the wrong depth. The second limitation
is that our method can not support transparent meterials. Because
rendering transparent virtual objects needs multiple bounces, which
is more challenging for rendering performance. So the other possible
future work is to extend our method to support transparent materials
while maintaining interactive frame rates.
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